1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
| from uuid import uuid4 from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor, LLMChainFilter, EmbeddingsFilter, \ DocumentCompressorPipeline from langchain.text_splitter import CharacterTextSplitter from langchain_community.chat_models import AzureChatOpenAI from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint from langchain_community.document_loaders.web_base import WebBaseLoader from langchain_community.document_transformers import EmbeddingsRedundantFilter, LongContextReorder from langchain_community.vectorstores.elasticsearch import ElasticsearchStore import os from langchain_community.embeddings import QianfanEmbeddingsEndpoint, HuggingFaceEmbeddings from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough, RunnableLambda from langchain_text_splitters import RecursiveCharacterTextSplitter from zhipuai import ZhipuAI from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Sequence, Type, TypeVar, Union, )
unique_id = uuid4().hex[0:8] os.environ["LANGCHAIN_PROJECT"] = f" [语境压缩] 内容过滤 qianfan Tracing Walkthrough - {unique_id}"
os.environ["LANGCHAIN_API_KEY"] = os.getenv('MY_LANGCHAIN_API_KEY')
bge_en_v1p5_model_path = "D:\\LLM\\Bge_models\\bge-base-en-v1.5"
embeddings_model = HuggingFaceEmbeddings( model_name=bge_en_v1p5_model_path, model_kwargs={'device': 'cuda:0'}, encode_kwargs={'batch_size': 32, 'normalize_embeddings': True, } )
vectorstore = ElasticsearchStore( es_url=os.environ['ELASTIC_HOST_HTTP'], index_name="index_sd_1024_vectors", embedding=embeddings_model, es_user="elastic", vector_query_field='question_vectors', es_password=os.environ['ELASTIC_ACCESS_PASSWORD'] )
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv('MY_AZURE_OPENAI_API_KEY') os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv('MY_AZURE_OPENAI_ENDPOINT') DEPLOYMENT_NAME_GPT3P5 = os.getenv('MY_DEPLOYMENT_NAME_GPT3P5') azure_chat = AzureChatOpenAI( openai_api_version="2023-05-15", azure_deployment=DEPLOYMENT_NAME_GPT3P5, temperature=0 )
os.environ["QIANFAN_ACCESS_KEY"] = os.getenv('MY_QIANFAN_ACCESS_KEY') os.environ["QIANFAN_SECRET_KEY"] = os.getenv('MY_QIANFAN_SECRET_KEY')
qianfan_chat = QianfanChatEndpoint( model="ERNIE-Bot-4" )
if __name__ == '__main__':
question = "What is Task Decomposition ?"
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=400) docs = text_splitter.split_documents(docs)
vectorstore.add_documents(docs)
LLMChainFilter doc_filter = LLMChainFilter.from_llm(qianfan_chat) filter_retriever = ContextualCompressionRetriever( base_compressor=doc_filter, base_retriever=retriever ) filtered_docs = filter_retriever.get_relevant_documents(question) pass
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000) docs = text_splitter.split_documents(docs)
ZHIPUAI_API_KEY = os.getenv('MY_ZHIPUAI_API_KEY') client = ZhipuAI(api_key=ZHIPUAI_API_KEY)
question = 'Memory can be defined as what ?' context = docs[0].page_content user_msg =f""" 根据给出的问题和上下文,如果上下文与问题相关,则返回YES,如果不相关,则返回NO。 > 问题: {question} > 上下文: >>> {context} >>> > 相关(YES / NO): """
response = client.chat.completions.create( model="glm-4", messages=[ {"role": "system", "content": "你是一个文稿编辑,负责判断用户问题是否和文档相关"}, {"role": "user", "content": user_msg} ], ) print(response.choices[0].message.content)
def local_filter(documents: Iterable[Document]) -> List[Document]: ZHIPUAI_API_KEY = os.getenv('MY_ZHIPUAI_API_KEY') client = ZhipuAI(api_key=ZHIPUAI_API_KEY)
new_docs = [] for doc in documents: context = doc.page_content user_msg = f""" 根据给出的问题和上下文,如果上下文与问题相关,则返回YES,如果不相关,则返回NO。 > 问题: {question} > 上下文: >>> {context} >>> > 相关(DOC_YES / DOC_NO): """ response = client.chat.completions.create( model="glm-4", messages=[ {"role": "system", "content": "你是一个文稿编辑,负责判断用户问题是否和文档相关"}, {"role": "user", "content": user_msg} ], ) if 'DOC_YES' in response.choices[0].message.content: new_docs.append(doc) return new_docs
template = """Answer the question based only on the following context: {context}
Question: {question} """ prompt = ChatPromptTemplate.from_template(template)
chain = ( {"context": retriever | RunnableLambda(local_filter), "question": RunnablePassthrough()} | prompt | qianfan_chat | StrOutputParser() ) res = chain.invoke(question) pass
|